Exact and numerical soliton solutions to nonlinear wave equations

Exact and numerical soliton solutions to nonlinear wave equations ” 

Kamruzzaman Khan ,   Henk Koppelaar ,  Ali Akbar … 2016 , No.2  , P. 5 – 22 


ِDOI : http://dx.doi.org/1022309/cjcme.2016.06


Because most physical systems are inherently nonlinear by nature, mathematical modeling of physical systems often leads to nonlinear evolution equations. Investigating traveling wave solutions of nonlinear evolution equations (NLEEs) plays a significant role in studying such nonlinear physical phenomena. This paper discusses the application of the functional variable method for finding solitary and periodic wave solutions of the longitudinal wave motion NLEE in a nonlinear magneto-electro-elastic (MEE) circular rod. Each of the obtained solutions contains an explicit function of the variables in the considered equations. The applied method yielded a powerful mathematical tool for solving these nonlinear wave equations without the necessity of a computer algebra system; according the widespread view “real mathematicians don not compute”. However, if the obtained exact hyperbolic solutions are executed numerically, then they show an undesirable unknown numerical conditioning problem. This paper contains a warning against it and information about how to prevent this outcome.

1. Th. P. Weissert, The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem, Springer, New York, 1997.
2. V. A. Yurko, Inverse Spectral Problems for Differential Operators and Their Applications, Gordon and Breach Science Publ., Amsterdam, The Netherlands, 2000.
3. A. Mourachkine, Room-Temperature Superconductivity, Cambridge International Science Publishing, University of Cambridge, Cambridge, United Kingdom, 2004.
4. A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education Press, Beijing and Springer-Verlag, Berlin Heidelberg, 2009.
5. A. Nazarzadeh, M. Eslami, M. Mirzazadeh, Exact solutions of some nonlinear partial differential equations using functional variable method, Pramana-Journal of Physics. Vol. 81, Nr. 2, 2013, pp. 225 – 236.
6. J. Lee, R. Sakthivel, New exact travelling wave solutions of bidirectional wave equations, Pramana-Journal of Physics. Vol. 76, Nr. 6, 2011, pp. 819 – 829.
7. J. Lee, R.Sakthivel, Exact travelling wave solutions for some nonlinear (N+1) dimensional evolution equations, Comput. Appl. Math. Vol. 31, 2012, pp. 219 – 243.
8. J. Lee, R. Sakthivel, Exact traveling wave solutions for some important nonlinear physical models, Pramana-Journal of Physics, Vol. 80, 2013, pp. 757 – 769.
9. M. A. Akbar, N. H. M. Ali, Exp-function method for Duffing Equation and new solutions of (2+1) dimensional dispersive long wave equations, Proc. in Applied Mathematics. Vol. 1, Nr. 2, 2011, pp. 30 – 42.

10. A. Bekir, A. Boz, Exact solutions for nonlinear evolution equations using Expfunction method, Physics Letters A. Vol. 372, 2008, pp. 1619 – 1625.
11. J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons & Fractals. Vol. 30, 2006, pp. 700 – 708.
12. J. Lee, R. Sakthivel, Exact travelling wave solutions of Schamel-Korteweg -de-Vries equation, Reports on Mathematical Physics. Vol. 68, 2011, pp. 153 – 161.
13. S. T. Mohiud-Din, Homotopy perturbation method for solving fourth-order boundary value problems, Math. Problems in Engineering. Vol. 2007, 2007, pp. 1 – 15. Article ID 98602, doi: http://dx.doi.org/10.1155/2007/98602.
14. S. T. Mohiud-Din, M. A. Akbar, Homotopy perturbation method for solving partial differential equations, Zeitschrift für Naturforschung A – A Journal of Physical Sciences. Vol. 64a, 2009, pp. 157 – 170.
15. S. T. Mohyud-Din, A. Yildrim, S. Sariaydin, Approximate Series Solutions of the Viscous Cahn-Hilliard Equation via the Homotopy Perturbation Method, World Applied Sciences Journal. Vol. 11, Nr. 7, 2010, pp. 813 – 818.
16. M. T. Ahmed, K. Khan, M. A. Akbar, Study of Nonlinear Evolution Equations to Construct Travelling Wave Solutions via Modified Simple Equation Method, Physical Review & Research International. Vol. 3, Nr. 4, 2013, pp. 490 – 503.
17. A. J. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations. Vol. 217, 2010, pp. 869 – 877.

18. K. Khan and M. A. Akbar, Solitary Wave Solutions of Some Coupled Nonlinear Evolution Equations, Journal of Scientific Researc. Vol. 6, Nr. 2, 2014, pp. 273 – 284. doi.org/10.3329/jsr.v6i 2.16671.
19. K. Khan, M. A. Akbar, Traveling Wave Solutions of Some coupled Nonlinear Evolution Equations, ISRN Mathematical Physics, Volume 2013, Article ID 685736,, 2013. http://dx.doi.org/10.1155/2013/685736.
20. M. E. Islam, K. Khan, M. A. Akbar, R. Islam, Traveling Wave Solutions of Nonlinear Evolution Equation via Enhanced(G’/G)-Expansion Method, GANIT: Journal of Bangladesh Mathematical Society. Vol. 33, 2013, pp. 83 – 92. http://dx.doi.org/10.3329/ganit.v33i0.17662.

21. H. Kim, R. Sakthivel, New exact travelling wave solutions of some
nonlinear higher dimensional physical models, Reports on Mathematical
Physics. Vol. 70, 2012, pp. 39 – 50.
22. M. Wang, X. Li, J. Zhang, The (G’/G)-expansion method and travelling
wave solutions nonlinear evolution equations in mathematical physics,
Physics Letters A. Vol. 372, 2008, pp. 417 – 423.
23. K. Khan, M. A. Akbar, H. Koppelaar, Study of coupled nonlinear partial
differential equations for finding exact analytical solutions, Royal Society
Open Science. Vol. 2, Nr. 7, 140406, 2015. http://dx.doi.org/10.1098/rsos.140406

24. K. Khan, M. A. Akbar, M. M. Rashidi, I. Zamanpour, Exact traveling wave
solutio-ns of an autonomous system via the enhanced (G’/G)-expansion
method, Waves in Random and Complex Media. Vol. 25, Nr. 4, 2015, pp.
644 – 655. http://dx.doi.org/10.1080/17455030.2015.1068964.
25. K. Khan, M. A. Akbar, Application of exp Φξ -expansion method to
find the exact solutions of modified Benjamin-Bona-Mahony equation,
World Applied Sciences Journal. Vol. 24, Nr. 10, 2013, pp. 1373 – 1377.
doi: 10.5829/ idosi.wasj.2013.24.10.1130.
26. W. X. Ma, H. L. Jyh, A transformed rational function method and exact
solutions to the (3+1) dimensional Jimbo – Miwa equation, Chaos Solitons
& Fractals. Vol. 42, Nr. 3, 2009, pp. 1356 – 1363. doi:
10.1016/ j.chaos.2009.03.043.
27. Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei, H. Zhang, Exact optical
solitons in Metamaterials with cubic-quintic nonlinearity and third order
dispersion, Nonlinear Dynamics. Vol. 80, Nr. 3, 2015, pp. 1365 – 1371.
28. W. X. Ma, T. Huang, Y. Zhang, A mult iple exp -function method for
nonlinear differential equations and its application, Physica Scripta. Vol.
82, Nr. 6, 2010. doi: 10.1088/0031 – 949/82/06/065003.
29. W. X. Ma, Z. Zhu, Solving the (3 + 1)-dimensional generalized KP and
BKP equations by the multiple exp-function algorithm, Applied
Mathematics and Computation. Vol. 218, Nr. 24, 2012, pp. 11871 – 11879.
doi.org/10.1016/ j.amc.2012.05.049.

30. W. X. Ma, Bilinear equations, Bell polynomials and linear superposition principle, Journal of Physics: Conference Series 411, 2013, 012021. doi:10.1088/1742-6596/411/1/012021.
31. W. X. Ma, H. Y. Wu, J. S. He, Partial Differential Equations Posessing Frobenius Integrable Decompositions, Physics Letters A. Vol. 364, Nr. 1, 2006, pp. 29.
32. A. Zerarka, S. Ouamane, A. Attaf, On the functional variable method for finding exact solutions to a class of wave equations, Applied Mathematics and Computation. Vol. 217, Nr. 7, 2010, pp. 2897 – 2904.
33. E. M. E. Zayed, S. A. H. Ibrahim, The functional variable method and its applications for finding the exact solutions of nonlinear PDEs in mathematical physics, AIP Conference Proceedings 1479, 2012, pp. 2049 doi: 10.1063/1.4756592.
34. M. Eslami, M. Mirzazadeh, Functional variable method to study nonlinear evolution equations, Central European Journal of Engineering. Vol. 3, Nr. 3, 2013. pp. 451 – 458.
35. S. Y. Zhang, Z. F. Liu, Three kinds of nonlinear dispersive waves in elastic rods with finite deformation, Applied Mathematics and Mechanic. Vol. 29, Nr. 7, 2008, pp. 909 – 917.
36. Z. F. Liu, S. Y. Zhang, Nonlinear waves and periodic solution in finite deformation elastic rod, Acta Mechanica Solida Sinica. Vol. 19, Nr. 1, 2006, pp. 1 – 8.
37. J. Y. Chen, E. Pan, H. L. Chen, Wave propagation in magneto-electro-elastic multilayered plates, Int. Journal of Solids and Structures, Vol. 44, Nr. 3–4, 2007, pp. 1073 – 1085. doi:10.1016/j.ijsolstr.2006.06.003.

38. C. X. Xue, E. Pan, S. Y. Zhang, Solitary waves in a magneto-electro-elastic circular rod, Smart Material Structures. Vol. 20, Nr. 10, 2011.  http://dx.doi.org/10.1088/0964-1726/20/10/105010